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• The Ozone (𝑂𝑂3) is well known to be present in different 
layers at the atmosphere.

 In the Stratosphere, the ozone layer acts as a shield that 
absorbs most of the sun’s ultraviolet radiation [2]. 

 The 𝑂𝑂3 it is present in the troposphere due the human 
activities, when the emissions interact with the sunlight 
and other gasses. In lower altitudes the 𝑂𝑂3 turns to be a 
toxic atmospheric pollutant [1,4,5].

Problem statement:

To provide spatial and temporal descriptions of the various 
pollutants from the urban to the continental and the global 
scales based on satellite observations

 Manage missing and uncertain data to restore plumes

 Tracking and visualization over time of the plumes 

 Study the interest of adding exogen data to build plumes 

 We were given data from the pollution in Beijing-China for 2
different seasons.

 Each observation is characterized by a resolution (0.25
degree ≈ 25 km), latitude, longitude, pixel values in Dobson
Units (DU), quality flag, and an image type (UT/LT).

 We consider the white zones as cloudy areas.

 A set of morphological filters such as a closing, and an image
inpainting is applied to fill some small zones missed in the
observation.

 We aim to find a set of Maximally Stable and Extremal 
Regions (MSER) [3].

 This algorithm scans the image in all its possible 
thresholds to find a set of maximal and stable region.

 A MSER region is composed by a set of points constrained 
to an adjacency in (4 or 8-neighbourhood).

Regions found. The darker colors are the highest values in DU.

 The kmeans cluster algorithm is used to determine 
the candidate regions and groups with pollution. 

 The input values are the coordinates of the center 
of gravity in X and Y positions of each reconstructed 
region and the DU value to perform the clustering. 
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Clustering result. Each cluster is plotted as a unique color 
region.

Optimal number of clustering 
by using the “Elbow” rule.

Clusters found with Kmeans
For this example, k-clusters = 10
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The evaluation aims to compare the group of regions found 
with the ground truth. For the tests, an expert mark out 
the regions where there exists a higher concentration of 
𝑂𝑂3 in the LT and UT images. Then, we compare the 
intersection between each cluster and the ground truth. 
Our goal is to minimize the number of false positives and 
false negatives. We make a comparison between both 
percentages of errors compared with the DU scale.

 To track a selected region/group to know the pollution 
that is moved from one place to another. For example, 
pollution detected in China and moved out to Korea.

 Classification of pollution based in their type. Natural 
or anthropogenic.

 Manage missing and uncertain data to restore
plumes.

 To compare with other seasons to verify whether we 
are detecting only pollution areas.

 To add new information for example of CO, to find a 
correlation between the regions found and another 
gas observations.In this case based on the

Dobson Units measurements,
a progressive limit was
defined. For this day, starting
from the value 16 over 35 DU,
the group of the highest
candidate regions to be
pollution can be obtained.
Where the highest group is
located at 29 over 35 DU.

The same test was made for
the UT images, where values
starting at 25 DU are the
candidate regions to be
pollutant.

Some regions cause an
increase in false positives at
very high values.
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4. Region projection
 The MSER regions found are 

projected in a label map to 
create a partition. 

 Each partition corresponds to a 
region. 
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