![[Hackathon] Machine Learning Approaches @ Halle aux Farines, salle 442C](https://u-pariscite.fr/wp-content/uploads/2023/04/brooke-cagle-uHVRvDr7pg-unsplash-300x169.jpg)
Come and take part in the Graduate School Translational Bioinformatics workshop on machine learning theory applied to problem solving in the medical and biological sciences.This workshop will include both theoretical and practical sessions with multiple examples.
The objective
The focus of the sessions will be on demonstrating the strength of these methods and the scope of application, but also on raising awareness of their limitations. Emphasis will be placed on the importance of managing best practices and using them under the appropriate conditions.
Target Audience
PhD students (or post-docs) and Master’s students interested in training in Machine Learning and/or Deep Learning, applied to biological or biomedical data. This workshop is also open to students in medicine, biology or other courses, with the requirement that they have a basic knowledge of a programming language such as R or Python.
Speakers from Université Paris Cité
- Farah ELLOUZE, Clinical Bioinformatics laboratory, IHU Institut Imagine
- Tatiana GALOCHKINA, DSIMB team, UMR-1134, MCU
- Nicolas GARCELON, Data Science platform and Clinical Bioinformatics laboratory, IHU Institut Imagine
- Jean-Christophe GELLY, DSIMB team, UMR-1134, MCU
- Frédéric GUYON, DSIMB team, UMR-1134, IR
- Romain NICOLLE, Clinical Bioinformatics laboratory, IHU Institut Imagine
- Marc VINCENT, Data Science platform and Clinical Bioinformatics Laboratory, IHU Institut Imagine
Main Topics
Introduction to machine learning and the main concepts of supervised learning: loss function, model optimisation, model evaluation, under-fitting and over-fitting. Introduction to deep learning (DL) and its applications.
Convolution networks and their application to image processing. Practical work on medical images.
Advanced network architectures and language processing models: from recurrent networks to transformers. Entanglement of protein sequences.
Advanced topics in deep learning: graphical neural networks, federated learning, natural language processing (NLP).
Registration is free but mandatory (20 seats available)
This event is organized by Catherine ETCHEBEST (DSIMB team, UMR-1134) and Antonio RAUSELL (Clinical Bioinformatics laboratory, IHU Institut Imagine).
À lire aussi
Une bourse ERC Synergy Grant pour sonder les premiers instants de l’Univers
Andrii Neronov, astrophysicien spécialisé en cosmologie, est lauréat d’un ERC Synergy Grant pour le projet COSMOMAG. Avec ses collègues internationaux, il souhaite percer les secrets de l’Univers et comprendre les phénomènes physiques survenus dans les tout premiers...
read more
Université Paris Cité : foyer de deux grandes communautés quantiques
2025 est l’année internationale des sciences et technologies quantiques. Dans ce cadre, l’Université Paris Cité revient sur des actions importantes en lien avec le quantique menées en son sein. L’équipe Algorithmique et Complexité de l’IRIF - Institut de Recherche en...
read more
Leucémies aiguës chez l’enfant : une exposition à la pollution de l’air dès la naissance pourrait être un facteur de risque
Une équipe de l’Inserm, en collaboration avec l’Université Paris Cité, l’Université Sorbonne Paris Nord et INRAE a utilisé les données issues de l’étude GEOCAP-Birth, fondée sur le registre national des cancers de l’enfant, pour évaluer le risque de leucémie aiguë en...
read more
Leiden 2025 : UPCité 1ère université française et 34e mondiale pour l’impact de ses publications ; 1ère université européenne par le nombre des publications de scientifiques femmes
Pour la quatrième année consécutive, l’Université Paris Cité maintient sa position de première université française pour l’impact de ses publications – mesuré par le nombre de publications dans les 10% les plus citées au monde – selon le classement de Leiden du Centre...
read more