![[Hackathon] Machine Learning Approaches @ Halle aux Farines, salle 442C](https://u-pariscite.fr/wp-content/uploads/2023/04/brooke-cagle-uHVRvDr7pg-unsplash-300x169.jpg)
Come and take part in the Graduate School Translational Bioinformatics workshop on machine learning theory applied to problem solving in the medical and biological sciences.This workshop will include both theoretical and practical sessions with multiple examples.

The objective
The focus of the sessions will be on demonstrating the strength of these methods and the scope of application, but also on raising awareness of their limitations. Emphasis will be placed on the importance of managing best practices and using them under the appropriate conditions.
Target Audience
PhD students (or post-docs) and Master’s students interested in training in Machine Learning and/or Deep Learning, applied to biological or biomedical data. This workshop is also open to students in medicine, biology or other courses, with the requirement that they have a basic knowledge of a programming language such as R or Python.
Speakers from Université Paris Cité
- Farah ELLOUZE, Clinical Bioinformatics laboratory, IHU Institut Imagine
- Tatiana GALOCHKINA, DSIMB team, UMR-1134, MCU
- Nicolas GARCELON, Data Science platform and Clinical Bioinformatics laboratory, IHU Institut Imagine
- Jean-Christophe GELLY, DSIMB team, UMR-1134, MCU
- Frédéric GUYON, DSIMB team, UMR-1134, IR
- Romain NICOLLE, Clinical Bioinformatics laboratory, IHU Institut Imagine
- Marc VINCENT, Data Science platform and Clinical Bioinformatics Laboratory, IHU Institut Imagine
Main Topics
Introduction to machine learning and the main concepts of supervised learning: loss function, model optimisation, model evaluation, under-fitting and over-fitting. Introduction to deep learning (DL) and its applications.
Convolution networks and their application to image processing. Practical work on medical images.
Advanced network architectures and language processing models: from recurrent networks to transformers. Entanglement of protein sequences.
Advanced topics in deep learning: graphical neural networks, federated learning, natural language processing (NLP).
Registration is free but mandatory (20 seats available)
This event is organized by Catherine ETCHEBEST (DSIMB team, UMR-1134) and Antonio RAUSELL (Clinical Bioinformatics laboratory, IHU Institut Imagine).
À lire aussi

Université Paris Cité explores new cooperation opportunities in India
To mark the 25th anniversary of bilateral cooperation between France and India, a delegation from Université Paris Cité, led by Antoine Kouchner, Vice President for International Relations, went to India from March 24 to 28, 2025. This visit provided an opportunity to...
read more
L’Université Paris Cité explore de nouvelles opportunités de coopération en Inde
À l’occasion des 25 ans de la coopération bilatérale entre la France et l’Inde, une délégation de l’Université Paris Cité, dirigée par Antoine Kouchner, vice-président des relations internationales, a effectué une mission en Inde du 24 au 28 mars 2025. Cette visite a...
read more
Entretien avec Quentin Deluermoz, lauréat d’un Global Professorship award de la British Academy
Professeur d'histoire et directeur du laboratoire ECHELLES à l'Université Paris Cité, Quentin Deluermoz vient d'obtenir une prestigieuse British Academy Global Professorship. Pendant quatre ans, il mènera à l'Université de Cambridge un projet ambitieux intitulé «...
read more
Les tables à penser de Circle U.
L’alliance européenne Circle U. s’invite dans votre bibliothèque ! Du 5 mai au 30 septembre, venez explorer les grandes thématiques de l’alliance européenne Circle U. à travers des tables thématiques dédiées. Démocratie, climat, santé globale… autant de sujets au cœur...
read more