![[Hackathon] Machine Learning Approaches @ Halle aux Farines, salle 442C](https://u-pariscite.fr/wp-content/uploads/2023/04/brooke-cagle-uHVRvDr7pg-unsplash-300x169.jpg)
Come and take part in the Graduate School Translational Bioinformatics workshop on machine learning theory applied to problem solving in the medical and biological sciences.This workshop will include both theoretical and practical sessions with multiple examples.

The objective
The focus of the sessions will be on demonstrating the strength of these methods and the scope of application, but also on raising awareness of their limitations. Emphasis will be placed on the importance of managing best practices and using them under the appropriate conditions.
Target Audience
PhD students (or post-docs) and Master’s students interested in training in Machine Learning and/or Deep Learning, applied to biological or biomedical data. This workshop is also open to students in medicine, biology or other courses, with the requirement that they have a basic knowledge of a programming language such as R or Python.
Speakers from Université Paris Cité
- Farah ELLOUZE, Clinical Bioinformatics laboratory, IHU Institut Imagine
- Tatiana GALOCHKINA, DSIMB team, UMR-1134, MCU
- Nicolas GARCELON, Data Science platform and Clinical Bioinformatics laboratory, IHU Institut Imagine
- Jean-Christophe GELLY, DSIMB team, UMR-1134, MCU
- Frédéric GUYON, DSIMB team, UMR-1134, IR
- Romain NICOLLE, Clinical Bioinformatics laboratory, IHU Institut Imagine
- Marc VINCENT, Data Science platform and Clinical Bioinformatics Laboratory, IHU Institut Imagine
Main Topics
Introduction to machine learning and the main concepts of supervised learning: loss function, model optimisation, model evaluation, under-fitting and over-fitting. Introduction to deep learning (DL) and its applications.
Convolution networks and their application to image processing. Practical work on medical images.
Advanced network architectures and language processing models: from recurrent networks to transformers. Entanglement of protein sequences.
Advanced topics in deep learning: graphical neural networks, federated learning, natural language processing (NLP).
Registration is free but mandatory (20 seats available)
This event is organized by Catherine ETCHEBEST (DSIMB team, UMR-1134) and Antonio RAUSELL (Clinical Bioinformatics laboratory, IHU Institut Imagine).
À lire aussi

La CVEC, ça sert à quoi ?
La Contribution Vie Étudiante et de Campus permet de créer, consolider et renforcer des actions dédiées à la vie étudiante et à la vie de campus au sein de l’université. Chaque année, l'Université Paris Cité finance différents projets pour...
read more![[Doctorat international] L’Université de Toronto et UPCité lancent un nouvel appel commun](https://u-pariscite.fr/wp-content/uploads/2025/06/Appels_a-1080x675.jpg)
[Doctorat international] L’Université de Toronto et UPCité lancent un nouvel appel commun
L’Université de Toronto et l’Université Paris Cité lancent un appel à projets conjoint afin de renforcer leur collaboration et de soutenir des projets de recherche dans toutes les disciplines.
read more![[International PhD] The University of Toronto and UPCité launch a new joint call for proposals](https://u-pariscite.fr/wp-content/uploads/2025/06/Appels_a-1080x675.jpg)
[International PhD] The University of Toronto and UPCité launch a new joint call for proposals
The University of Toronto and the Université Paris Cité and are launching a joint call for proposals in order to further develop their research collaboration and doctoral program strength.
read more
Classement CWUR 2025 : l’Université Paris Cité 29e mondiale
L’Université Paris Cité se distingue cette année encore dans le classement du Center for World University Rankings (CWUR), en atteignant la 29e place mondiale et la 2e place en France et pour l’Europe continentale. À l’instar du classement de Shanghai, le CWUR repose...
read more