![[Hackathon] Machine Learning Approaches @ Halle aux Farines, salle 442C](https://u-pariscite.fr/wp-content/uploads/2023/04/brooke-cagle-uHVRvDr7pg-unsplash-300x169.jpg)
Come and take part in the Graduate School Translational Bioinformatics workshop on machine learning theory applied to problem solving in the medical and biological sciences.This workshop will include both theoretical and practical sessions with multiple examples.

The objective
The focus of the sessions will be on demonstrating the strength of these methods and the scope of application, but also on raising awareness of their limitations. Emphasis will be placed on the importance of managing best practices and using them under the appropriate conditions.
Target Audience
PhD students (or post-docs) and Master’s students interested in training in Machine Learning and/or Deep Learning, applied to biological or biomedical data. This workshop is also open to students in medicine, biology or other courses, with the requirement that they have a basic knowledge of a programming language such as R or Python.
Speakers from Université Paris Cité
- Farah ELLOUZE, Clinical Bioinformatics laboratory, IHU Institut Imagine
- Tatiana GALOCHKINA, DSIMB team, UMR-1134, MCU
- Nicolas GARCELON, Data Science platform and Clinical Bioinformatics laboratory, IHU Institut Imagine
- Jean-Christophe GELLY, DSIMB team, UMR-1134, MCU
- Frédéric GUYON, DSIMB team, UMR-1134, IR
- Romain NICOLLE, Clinical Bioinformatics laboratory, IHU Institut Imagine
- Marc VINCENT, Data Science platform and Clinical Bioinformatics Laboratory, IHU Institut Imagine
Main Topics
Introduction to machine learning and the main concepts of supervised learning: loss function, model optimisation, model evaluation, under-fitting and over-fitting. Introduction to deep learning (DL) and its applications.
Convolution networks and their application to image processing. Practical work on medical images.
Advanced network architectures and language processing models: from recurrent networks to transformers. Entanglement of protein sequences.
Advanced topics in deep learning: graphical neural networks, federated learning, natural language processing (NLP).
Registration is free but mandatory (20 seats available)
This event is organized by Catherine ETCHEBEST (DSIMB team, UMR-1134) and Antonio RAUSELL (Clinical Bioinformatics laboratory, IHU Institut Imagine).
À lire aussi

No relationship between Université Paris Cité and the private company operating under the name City University of Paris
Université Paris Cité discovered that a private higher education establishment initially called Intelligest has recently changed its company name for ‘City University of Paris’. Université Paris Cité points out that it has no links whatsoever (association,...
read more
Absence de lien entre l’Université Paris Cité et la société privée d’enseignement communiquant sous le nom City University of Paris
L’Université Paris Cité a découvert qu’une société d’enseignement privé initialement dénommée Intelligest avait récemment adopté la dénomination « City University of Paris » pour proposer des services d’enseignement supérieur à distance. L’Université Paris Cité...
read more
L’Université Paris Cité obtient la Labellisation HRS4R
L’Université Paris Cité vient de franchir une étape importante en obtenant la labellisation HR Excellence in Research (HRS4R), une reconnaissance décernée par la Commission Européenne. Cette distinction témoigne de l’engagement de l’établissement à promouvoir un...
read more
Un projet solidaire ? Participez au concours Object’if Solidarité !
Vous êtes porteuse ou porteur d’un projet solidaire ou socialement innovant qui vise à améliorer le bien-être de tous ? Vous rêvez d’un coup de pouce pour le développer ? Alors participez au concours Object’if Solidarité qui soutient et récompense les projets...
read more