En combinant les méthodes d’apprentissage machine et de calcul intensif avec des équations thermodynamiques, une équipe internationale dirigée par des scientifiques de l’Institut de physique du globe de Paris a mis au point un modèle numérique qui prédit les propriétés physiques de différentes laves fondues et des verres associés. Ce modèle innovant, en cours d’extension vers des compositions naturelles, ouvre ainsi des perspectives pour la prédiction systématique et précise des propriétés des aluminosilicates fondus et vitreux, afin de résoudre des problèmes en sciences des matériaux et en géosciences, en modélisant notamment la dynamique des éruptions volcaniques en fonction de la composition des laves…

© IPGP
De l’écran de smartphone à la lave des volcans, les verres sont omniprésents dans les objets du quotidien et dans la nature. Mais malgré cette importance, aucun modèle n’existe à l’heure actuelle pour prédire les propriétés et la structure des verres les plus communs : les aluminosilicates.
Ces aluminosilicates fondus constituent la partie liquide des magmas et laves, qui ont joué et jouent toujours un rôle primordial dans l’évolution de notre planète. Ainsi, après l’accrétion de notre jeune Terre, la dynamique des océans magmatiques primordiaux a influencé l’initiation de la tectonique des plaques et la formation des premiers continents. Aujourd’hui, les magmas continuent d’influencer l’histoire de notre planète via les éruptions volcaniques qui façonnent la surface terrestre. De plus, la dynamique effusive ou explosive de ces éruptions est un sujet de recherche actif, du fait des enjeux sociétaux majeurs que représentent les crises volcaniques, en terme de gestion des aléas et risques directs ou indirects des éruptions, comme montré actuellement par l’éruption du Cubre Vieja à La Palma, dans l’archipel des Canaries.
Mais malgré l’importance de ces verres et magmas aluminosilicatés, aucun modèle global ne permet de prédire leurs propriétés structurales et thermodynamiques. En effet, même s’ils ont une composition de base commune, ces propriétés varient très fortement en fonction de la présence d’éléments supplémentaires, de leur structure atomique, ou des température et conditions de refroidissements…
Dans une étude internationale innovante, publiée en ligne le 28 août 2021 dans le revue Geochimica Cosmochimica Acta, des scientifiques de l’Institut de physique du globe de Paris, d’Université Paris Cité et du CNRS et leurs collègues de l’Australian National University en Australie, de la Carnegie Institution for Science aux États-Unis et de l’université de Durham au Royaume-Uni, ont combiné les méthodes de calcul intensif du Deep Learning, sur la nouvelle plateforme de calcul intensif DANTE, commune à l’IPGP et au laboratoire APC (CNRS, Université Paris Cité), avec les dernières connaissances physiques et thermodynamiques sur les aluminosilicates fondus et vitreux. Le modèle ainsi créé, nommé i-Melt, permet des prédictions des propriétés structurales et thermodynamiques de laves fondues et de leurs verres, et notamment leur viscosité, leur entropie de configuration, ou leur température de transition liquide-verre. Le modèle i-Melt permet aussi la prédiction des propriétés des verres formés par trempe rapide de ces liquide, comme par exemple la densité, l’indice de réfraction optique ou encore le spectre Raman, signature vibrationnelle de la structure atomique du verre.
Ce modèle, pour l’instant limité à une composition simplifiée des aluminosilicates fondus (système Na2O-K2O-Al2O3-SiO2) est en cours d’extension vers des compositions naturelles, ouvrant ainsi des perspectives importantes pour la prédiction systématique et précise des propriétés des aluminosilicates fondus et vitreux. Il devrait permettre de résoudre des problèmes en sciences des matériaux (formation de nouveaux verres, étude de leur propriétés…) et en géosciences (dynamique des éruptions volcaniques en fonction de la composition des laves, prédiction des propriétés dynamiques des magmas constituant les océans magmatiques primordiaux…). Cette étude confirme aussi l’apport de la combinaison du machine learning avec les théories physiques et thermodynamiques existantes pour répondre à des problématiques en sciences de la Terre et des matériaux.
Référence :
Charles Le Losq, Andrew P. Valentine, Bjorn O. Mysen, Daniel R. Neuville, Structure and properties of alkali aluminosilicate glasses and melts: Insights from deep learning, Geochimica et Cosmochimica Acta, Volume 314, 2021,
À lire aussi

Résultats de l’appel à projets 2025 avec l’Université de Toronto
L’appel à projets 2025 entre l’Université Paris Cité et l’Université de Toronto a suscité un bel engouement au sein des communautés scientifiques des deux institutions. Dix-huit propositions ont été soumises par des binômes de chercheuses et chercheurs, cinq projets...
lire plus
FIRE-UP, un projet structurant qui renforce l’impact économique et social de l’Université Paris Cité
Afin d’optimiser l’impact économique et social de l’Université Paris Cité sur son territoire, à l’échelle régionale, nationale et internationale, FIRE-UP, projet structurant de l’Université Paris Cité, déploie plusieurs actions visant d’une part à optimiser le...
lire plus
Émergence 2025 : 52 projets financés !
L’appel à projets Émergence Recherche – Début de carrière soutient le démarrage d’une nouvelle thématique de recherche et/ou la réalisation d’une étude pilote et vise à contribuer ainsi à la dynamique de recherche facultaire et inter-facultaire d’Université Paris...
lire plus
Lymphomes B : Quand une enzyme « zombie » favorise leur survenue
Dans le cadre d'une collaboration entre l'équipe du Professeur Fernando Rodrigues Lima (Unité de Biologie Fonctionnelle et Adaptative (BFA), UMR 8251 Université Paris Cité / CNRS) et le laboratoire du Docteur Michael Green (MD Anderson Cancer Center/Université du...
lire plus